Predicting 5-Year Dementia Conversion in Veterans with Mild Cognitive Impairment Using Electronic Health Records

Chase Irwin, Donna Tjandra, Chengcheng Hu, Vinod Aggarwal, Amanda Lienau, Bruno Giordani, Jenna Wiens, Raymond Q. Migrino

U.S. Department of Veterans Affairs

Veterans Health Administration Phoenix VA Health Care System

VA | Office of Healthcare Innovation and Learning

Mild Cognitive Impairment

- MCI is a stage preceding Alzheimer's disease (AD) and related dementias.¹
- Meta-analysis: 33.6% of MCI patients progressed to AD²
- Prior autopsy studies show that the brain pathology in MCI is intermediate in severity between cognitively normal controls and patients with AD
- Important to identify MCI patients at risk of developing dementia:
 - Target candidates for early treatment, including new, but expensive tx (e.g. mAb lecanemab)
 - Identify high-risk participants to recruit to improve clinical trial success rates of new txs

Predicting MCI to Dementia Conversion

- Current methods to predict dementia rely on biomarkers (e.g. neuropsychologic tests, specialized imaging or CSF assays) that are not widely obtained, costly or invasive.¹
- The generalizability of current models is limited due to small samples sizes.
- EHRs provide high-dimensional data collected during routine clinical encounters care that could be used to predict dementia conversion.

Synthetic Data

- Disadvantages of using EHR-based data include limited data access and vulnerability to privacy breaches
- Synthetic data do not pertain to real patients but closely resemble real data.
- Software (such as MDClone) could generate non-reversible, artificially created synthetic data that resemble the statistical characteristics and correlations of real data.
- The algorithm to create synthetic data is multivariate and generates all variables together, using a covariance measure.¹
- Synthetic data is generated by random sampling from statistical distributions estimated from the original data.¹

ACD Age Onset

(1) Benaim RA, et al. JMIR Med Inform. 2020

Benefits of Synthetic Data

- Protection of patient privacy
- Increased access for researchers that accelerates scientific discoveries
- Increased scientific rigor through cross-validation of results
- Democratization of the statistical modelling process

Aims

• **Primary**: Develop a generalizable EHR-based model to predict MCI to all-cause dementia (ACD) conversion within 5 years

• Secondary: To compare the performance of MCI to ACD prediction models based on EHR real patient data versus synthetic data

Identifying MCI and ACD Patients

- ICD 9/10 codes were used to identify MCI and ACD patients
- VA Centralized Interactive Phenomics Resource (CIPHER) validated algorithms aided in classification¹
- MCI \rightarrow 95% specificity; ACD \rightarrow 82% specificity
- Both algorithms required a minimum of 2 visits with the Dx

Identifying Comorbid Predictors of ACD Conversion

- All comorbid predictors were selected *a priori* based on previous literature testing these conditions as potential risk factors
- ICD 9/10 codes used
 - Charlson Comorbidity Index¹
 - Elixhauser Comorbidity Index²
 - VA CIPHER

Comorbidities	ICD – 9 Codes	ICD – 10 Codes	
Alcohol abuse ^b	265.2, 291.1 – 291.3, 291.5 –291.9,	F10, E52, G62.1, I42.6,	
	303.0, 303.9, 305.0, 357.5, 425.5,	K29.2, K70.0, K70.3,	
	535.3, 571.0 -	K70.9, T51.x, Z50.2,	
	571.3, 980.x, V11.3	Z71.4, Z72.1	
Atrial fibrillation ^a	427.31	148.0, 148.1, 148.11, 148.19, 148.2,	
		148.20, 148.21, 148.91	
Cerebrovascular disease ^c	362.34, 430.x - 438.x	G45.x, G46.x, H34.0, I60.x-I69.x	
Depression ^b	296.2, 296.3, 296.5,300.4, 309.x,	F20.4, F31.3 - F31.5, F32.x, F33.x,	
	311	F34.1, F41.2, F43.2	
Diabetes ^c	250.0 - 250.3, 250.8, 250.9	E10.0, E10.1, E10.6, E10.8, E10.9,	
	250.4 - 250.7	E11.0, E11.1, E11.6, E11.8, E11.9,	
		E12.0, E12.1, E12.6, E12.8, E12.9,	
		E13.0, E13.1, E13.6, E13.8, E13.9,	
		E14.0, E14.1, E14.6, E14.8, E14.9,	
		E10.2 - E10.5, E10.7, E11.2 - E11	
		E11.7, E12.2 - E12.5, E12.7, E13.2	
		E13.5, E13.7, E14.2–E14.5, E14.7	
Hearing Loss ^d	389.x	H90.x, H91.x	
Heart failure ^c	398.91, 402.01, 402.11, 402.91,	109.9, 111.0, 113.0, 113.2, 125.5,	
	404.01, 404.03, 404.11, 404.13,	142.0, 142.5 – 142.9, 143.x, 150.x,	
	404.91, 404.93, 425.4 - 425.9,	P29.0	
	428.x		
Hyperlipidemiaª	272.0, 272.1, 272.2, 272.3, 272.4	E78.0, E78.00, E78.01, E78.1, E78	
		E78.3, E78.4, E78.41, E78.49, E78	
Hypertension ^b	401.x, 402.x - 405.x	10.x, 11.x - 13.x, 15.x	
Liver disease ^c	070.22, 070.23, 070.32, 070.33,	B18.x, K70.0 – K70.3, K70.9,	
	070.44, 070.54, 070.6, 070.9,	K71.3 – K71.5, K71.7, K73.x, K74.>	
	570.x, 571.x, 573.3, 573.4,	K76.0, K76.2 - K76.4, K76.8, K76.9	
	573.8, 573.9, V42.7	Z94.4	
	456.0 - 456.2, 572.2 - 572.8	185.0, 185.9, 186.4, 198.2, K70.4,	
		K71.1, K72.1, K72.9, K76.5, K76.6,	
		K76.7	

(1) Charlson ME, et al. J Chronic Dis. 1987 (2) Elixhauser S, et al. Med Care. 1998

Statistical Methods

- We randomly partitioned our full cohort into a training set (70%) and test set (30%)
- Created three synthetic training sets using MDClone
- Fit Cox proportional hazard models for each training set
- Applied each training set to our held-out test set and estimated the time-dependent AUC and Brier score for ACD conversion at 5 years

- 15,420 out of 59,782 MCI patients (26%) converted to ACD within 5 years
- Kaplan Meier estimate of 5-year conversion to ACD was 28.4% (95% CI: 28.0% 28.8%)
- Median time to conversion was 1.94 (IQR: 1.09 3.10) years
- Median age of MCI Dx was 70.9 (IQR: 63.7 80.7) years

	A. Tr	aining Set Real (n :	= 41,817)	B. Tes	t Set Real (n = 17,	965)
Demographics	ACD	No ACD	p-value	ACD	No ACD	p-value
	(n = 10,784)	(n = 31,033)		(n = 4,636)	(n = 13,329)	
Age at MCI	77.01	69.01	<0.001*	76.72	68.91	<0.001*
DX, median	(69.17 – 83.34)	(62.11 – 79.18)		(69.08 – 83.16)	(62.09 – 79.07)	
(IQR), years						
Age <u>yrs</u>						
			<0.001*			<0.001*
S 50 – 55	162 (1.50)	2,611 (8.41)		67 (1.44)	1,105 (8.29)	
55 – 60	311 (2.88)	3,220 (10.38)		136 (2.93)	1,405 (10.54)	
60 – 65	890 (8.25)	4,916 (15.84)		398 (8.59)	2,103 (15.78)	
65 – 70	1,673 (15.51)	5,809 (18.72)		710 (15.32)	2,560 (19.21)	
70 – 75	1,662 (15.41)	3,835 (12.36)		743 (16.03)	1,655 (12.42)	
75 – 80	1,924 (17.84)	3,445 (11.10)		831 (17.93)	1,469 (11.02)	
80 – 85	2,135 (19.80)	3,542 (11.41)		928 (20.02)	1,531 (11.49)	
>85	2,027 (18.80)	3,655 (11.78)		823 (17.75)	1,501 (11.26)	
Race, No. (%)			<0.001*			0.002*
Asian/Pacific	146 (1.35)	426 (1.37)		60 (1.29)	178 (1.34)	
Black	1,349 (12.51)	4,431 (14.28)		590 (12.73)	1,998 (14.99)	
Native	56 (0.52)	210 (0.68)		20 (0.43)	78 (0.59)	
American						
Other†	1,006 (9.33)	2,886 (9.30)		423 (9.12)	1,234 (9.26)	
White	8,227 (76.29)	23,080 (74.37)		3,543 (76.42)	9,841 (73.83)	
Ethnicity, No.			0.03*			0.03*
(%)						
Not Hispanic	9,590 (88.93)	27,436 (88.41)		4,069 (87.77)	11,802 (88.54)	
or Latino						
Hispanic or	650 (6.03)	1,828 (5.89)		322 (6.95)	783 (5.87)	
Latino						
Other	544 (5.05)	1,769 (5.70)		245 (5.29)	744 (5.58)	
Sex, No. (%)			<0.001*			<0.001*
Female	354 (3.28)	1,472 (4.74)		156 (3.37)	667 (5.00)	
Male	10,430 (96.72)	29,561 (95.26)		4,480 (96.64)	12,662 (95.00)	
BMI, No. (%)			<0.001*			<0.001*
Underweight	105 (0.97)	372 (1.20)		60 (1.29)	166 (1.25)	
Normal	2,952 (27.37)	6,717 (21.65)		1,273 (27.46)	2,909 (21.83)	
Overweight	4,725 (43.82)	12,584 (40.55)		1,958 (42.24)	5,312 (39.85)	
Obese	3,002 (27.84)	11,360 (36.61)		1,345 (29.01)	4,942 (37.08)	

	A. Training Set Real (n = 41,817)			B. Test Set Real (n = 17,965)		
Demographics	ACD	No ACD	p-value	ACD	No ACD	p-value
	(n = 10,784)	(n = 31,033)	-	(n = 4,636)	(n = 13,329)	-
Age at MCI	77.01	69.01	<0.001*	76.72	68.91	<0.001*
DX, median	(69.17 – 83.34)	(62.11 – 79.18)		(69.08 - 83.16)	(62.09 - 79.07)	
(IQR), years						
Age vrs						
			<0.001*			<0.001*
S 50 – 55	162 (1.50)	2,611 (8.41)		67 (1.44)	1,105 (8.29)	
55 - 60	311 (2.88)	3,220 (10.38)		136 (2.93)	1,405 (10.54)	
60 - 65	890 (8.25)	4,916 (15.84)		398 (8.59)	2,103 (15.78)	
65 – 70	1,673 (15.51)	5,809 (18.72)		710 (15.32)	2,560 (19.21)	
70 – 75	1,662 (15.41)	3,835 (12.36)		743 (16.03)	1,655 (12.42)	
75 – 80	1,924 (17,84)	3,445 (11,10)		831 (17.93)	1,469 (11.02)	
80 - 85	2,135 (19.80)	3.542 (11.41)		928 (20.02)	1,531 (11,49)	
>85	2.027 (18.80)	3,655 (11,78)		823 (17.75)	1,501 (11,26)	
Race, No. (%)			<0.001*			0.002*
Asian/Pacific	146 (1.35)	426 (1.37)		60 (1.29)	178 (1.34)	
Black	1,349 (12.51)	4,431 (14.28)		590 (12.73)	1,998 (14.99)	
Native	56 (0.52)	210 (0.68)		20 (0.43)	78 (0.59)	
American		. ,				
Other†	1,006 (9.33)	2,886 (9.30)		423 (9.12)	1,234 (9.26)	
White	8,227 (76.29)	23,080 (74.37)		3,543 (76.42)	9,841 (73.83)	
Ethnicity, No.			0.03*			0.03*
(%)						
Not Hispanic	9,590 (88.93)	27,436 (88.41)		4,069 (87.77)	11,802 (88.54)	
or Latino						
Hispanic or	650 (6.03)	1,828 (5.89)		322 (6.95)	783 (5.87)	
Latino						
Other	544 (5.05)	1,769 (5.70)		245 (5.29)	744 (5.58)	
Sex, No. (%)			<0.001*			<0.001*
Female	354 (3.28)	1,472 (4.74)		156 (3.37)	667 (5.00)	
Male	10,430 (96.72)	29,561 (95.26)		4,480 (96.64)	12,662 (95.00)	
BMI, No. (%)			<0.001*			<0.001*
Underweight	105 (0.97)	372 (1.20)		60 (1.29)	166 (1.25)	
Normal	2,952 (27.37)	6,717 (21.65)		1,273 (27.46)	2,909 (21.83)	
Overweight	4,725 (43.82)	12,584 (40.55)		1,958 (42.24)	5,312 (39.85)	
Obese	3,002 (27.84)	11,360 (36.61)		1,345 (29.01)	4,942 (37.08)	

MCI patients who converted were older than those who did not

	A. Training Set Real (n = 41,817)			B. Test Set Real (n = 17,96		
Demographics	ACD	No ACD	p-value	ACD	No ACD	p-value
	(n = 10,784)	(n = 31,033)		(n = 4,636)	(n = 13,329)	
Age at MCI	77.01	69.01	<0.001*	76.72	68.91	<0.001*
DX, median	(69.17 – 83.34)	(62.11 – 79.18)		(69.08 – 83.16)	(62.09 – 79.07)	
(IQR), years						
Age <u>vrs</u>						
			<0.001*			<0.001*
S 50 – 55	162 (1.50)	2,611 (8.41)		67 (1.44)	1,105 (8.29)	
55 – 60	311 (2.88)	3,220 (10.38)		136 (2.93)	1,405 (10.54)	
60 – 65	890 (8.25)	4,916 (15.84)		398 (8.59)	2,103 (15.78)	
65 – 70	1,673 (15.51)	5,809 (18.72)		710 (15.32)	2,560 (19.21)	
70 – 75	1,662 (15.41)	3,835 (12.36)		743 (16.03)	1,655 (12.42)	
75 – 80	1,924 (17.84)	3,445 (11.10)		831 (17.93)	1,469 (11.02)	
80 – 85	2,135 (19.80)	3,542 (11.41)		928 (20.02)	1,531 (11.49)	
>85	2,027 (18.80)	3,655 (11.78)		823 (17.75)	1,501 (11.26)	
Race, No. (%)			<0.001*			0.002*
Asian/Pacific	146 (1.35)	426 (1.37)		60 (1.29)	178 (1.34)	
Black	1,349 (12.51)	4,431 (14.28)		590 (12.73)	1,998 (14.99)	
Native	56 (0.52)	210 (0.68)		20 (0.43)	78 (0.59)	
American						
Other†	1,006 (9.33)	2,886 (9.30)		423 (9.12)	1,234 (9.26)	
White	8,227 (76.29)	23,080 (74.37)		3,543 (76.42)	9,841 (73.83)	
Ethnicity, No.			0.03*			0.03*
(%)	0.500 (00.00)	07 400 400 44				
Not Hispanic	9,590 (88.93)	27,436 (88.41)		4,069 (87.77)	11,802 (88.54)	
or Latino	650 (6.02)	1 020 (5 00)		222 (6.05)	702 (5.07)	
Lotino	000 (0.03)	1,020 (0.09)		322 (0.95)	165 (5.61)	
Other	544 (5.05)	1 760 (5 70)		245 (5 20)	744 (5 58)	
Sex No (%)	344 (3.03)	1,703 (5.70)	<0.001*	243 (3.23)	744 (0.00)	<0.001*
Eemale	354 (3.28)	1 472 (4 74)	-0.001	156 (3 37)	667 (5.00)	-0.001
Male	10 430 (96 72)	29 561 (95 26)		4 480 (96 64)	12 662 (95 00)	
BMI No (%)	10,400 (00.12)	20,001 (00.20)	<0.001*	7,400 (30.04)	12,002 (00.00)	<0.001*
Underweight	105 (0.97)	372 (1 20)	-0.001	60 (1 29)	166 (1.25)	-0.001
Normal	2 952 (27 37)	6 717 (21 65)		1 273 (27 46)	2 909 (21 83)	
Overweight	4 (25 (43 82)	12 584 (40 55)		1 958 (42 24)	5 312 (30 85)	
Ohese	3 002 (27 84)	11 360 (36 61)		1 345 (29 01)	4 942 (37 08)	

 MCI patients who converted were older than those who did not

• Fewer obese MCI patients converted to ACD

	A. Tr	aining Set Real (n	= 41,817)	B. Tes	<u>t Set Real (n = 17,</u>	965)
Demographics	ACD	No ACD	p-value	ACD	No ACD	p-value
	(n = 10,784)	(n = 31,033)	-	(n = 4,636)	(n = 13,329)	-
		. , ,			. , .	
Age at MCI	77.01	69.01	<0.001*	76.72	68.91	<0.001*
DX, median	(69.17 – 83.34)	(62.11 – 79.18)		(69.08 - 83.16)	(62.09 - 79.07)	
(IQR), years	· · · ·	· · · ·		, , , , , , , , , , , , , , , , , , ,	、	
Age vrs						
			<0.001*			<0.001*
S 50 – 55	162 (1.50)	2,611 (8.41)		67 (1.44)	1,105 (8.29)	
55 – 60	311 (2.88)	3,220 (10.38)		136 (2.93)	1,405 (10.54)	
60 - 65	890 (8.25)	4,916 (15.84)		398 (8.59)	2,103 (15.78)	
65 – 70	1,673 (15.51)	5,809 (18.72)		710 (15.32)	2,560 (19.21)	
70 – 75	1,662 (15.41)	3,835 (12.36)		743 (16.03)	1,655 (12.42)	
75 – 80	1,924 (17.84)	3,445 (11.10)		831 (17.93)	1,469 (11.02)	
80 – 85	2,135 (19.80)	3,542 (11.41)		928 (20.02)	1,531 (11.49)	
>85	2,027 (18.80)	3,655 (11.78)		823 (17.75)	1,501 (11.26)	
Race, No. (%)		· · · ·	<0.001*			0.002*
Asian/Pacific	146 (1.35)	426 (1.37)		60 (1.29)	178 (1.34)	
Black	1,349 (12.51)	4,431 (14.28)		590 (12.73)	1,998 (14.99)	
Native	56 (0.52)	210 (0.68)		20 (0.43)	78 (0.59)	
American						
Other†	1.006 (9.33)	2,886 (9,30)		423 (9.12)	1.234 (9.26)	
White	8,227 (76.29)	23,080 (74.37)		3,543 (76.42)	9,841 (73.83)	
Ethnicity, No.			0.03*			0.03*
(%)						
Not Hispanic	9,590 (88.93)	27,436 (88.41)		4,069 (87.77)	11,802 (88.54)	
or Latino						
Hispanic or	650 (6.03)	1,828 (5.89)		322 (6.95)	783 (5.87)	
Latino					7.4.45.50	
Other	544 (5.05)	1,769 (5.70)	0.0014	245 (5.29)	/44 (5.58)	0.0045
Sex, No. (%)	0.5.4.40.000		<0.001*	150 (0.07)	0.07 (5.00)	<0.001*
Female	354 (3.28)	1.4/2 (4./4)		156 (3 37)	667 (5.00)	
Male	10,430 (96.72)	29,561 (95.26)	0.00/#	4,480 (96.64)	12,662 (95.00)	0.0045
BMI, No. (%)	405 (0.07)	070 (4.00)	<0.001*	00 (4 00)	400 (4.05)	<0.001*
Underweight		372 (1.20)		60 (1.29)	166 (1.25)	
Normal	2,952 (27.37)	6,717 (21.65)		1,273 (27.46)	2,909 (21.83)	
Overweight	4,725 (43.82)	12,584 (40.55)		1,958 (42.24)	5,312 (39.85)	
Obese	3,002 (27.84)	11,360 (36.61)		1,345 (29.01)	4,942 (37.08)	

 MCI patients who converted were older than those who did not

• Fewer obese MCI patients converted to ACD

 The overall cohort was predominately white and male

Results: Comorbid Profiles

	A.	A. Training Set Real (n = 41,497)			B. Test Set Real (n = 17,848)		
	ACD	No ACD	p-value	ACD	No ACD	p-value	
	(n = 10,794)	(n = 30,703)		(n = 4,638)	(n = 13,210)		
Comorbidities,							
No. (%)							
Heart Failure	1,693 (15.69)	4,518 (14.72)	0.02*	750 (16.17)	1,928 (14.59)	0.01*	
Renal Disease	1,864 (17.27)	4,776 (15.56)	<0.001*	865 (18.65)	1,997 (15.12)	<0.001*	
Rheumatic Disease	468 (4.34)	1,179 (3.84)	0.03*	219 (4.72)	491 (3.72)	0.003*	
Hyperlipidemia	8,712 (80.71)	23,755 (77.37)	<0.001*	3,771 (81.31)	10,246 (77.56)	<0.001*	
Sleep Apnea	2,304 (21.35)	8,209 (26.74)	<0.001*	1,002 (21.60)	3,625 (27.44)	<0.001*	
Peripheral	2,665 (24.69)	6,384 (20.79)	<0.001*	1,140 (24.58)	2,698 (20.42)	<0.001*	
Vascular Disease							
Peptic Ulcer	733 (6.79)	1,822 (5.93)	0.002*	346 (7.46)	780 (5.91)	<0.001*	
Disease							
Atrial Fibrillation	1,657 (15.35)	4,018 (13.09)	<0.001*	783 (16.88)	1,687 (12.77)	<0.001*	
Myocardial	1,286 (11.91)	3,113 (10.14)	<0.001*	559 (12.05)	1,330 (10.07)	<0.001*	
Infarction							
Hypertension	9,080 (84.12)	24,493 (79.77)	<0.001*	3,940 (84.95)	10,497 (79.46)	<0.001*	
Cerebrovascular	3,192 (29.57)	7,884 (25.68)	<0.001*	1,423 (30.68)	3,320 (25.13)	<0.001*	
Disease							
Depression	5,708 (52.88)	19,103 (62.22)	<0.001*	2,472 (53.30)	8,269 (62.60)	<0.001*	
Alcohol Abuse	1,676 (15.53)	6,968 (22.70)	<0.001*	689 (14.86)	3,045 (23.05)	<0.001*	
Liver Disease	934 (8.65)	3,387 (11.03)	<0.001*	393 (8.47)	1,527 (11.56)	< 0.001*	
Diabetes	4,304 (39.87)	11,953 (38.93)	0.09	1,967 (42.41)	5,081 (38.46)	<0.001*	
Hearing Loss	6,168 (57.14)	15,897 (51.78)	< 0.001*	2,641 (56.94)	6,812 (51.57)	<0.001*	

ACD converters had significantly higher proportions for all comorbid predictors besides

- Sleep Apnea
- Depression
- Alcohol Abuse

	Hazard Ratio	p-value		Hazard Ratio	p-value
	(95% CI)			(95% CI)	
Age MCI DX,			Comorbidities		
years					
50 - 55	Ref	<0.001*	Cerebrovascular Disease	1.10 (1.06 – 1.15)*	<0.001*
55 - 60	1.53 (1.26 – 1.85)*		Myocardial Infarction	1.09 (1.03 – 1.16)*	0.004*
60 - 65	2.76 (2.33 – 3.26)*		Hypertension	1.07 (1.02 – 1.13)*	0.01*
65 – 70	4.17 (3.54 - 4.90)*		Diabetes	1.06 (1.02 - 1.10)	0.007*
70 – 75	6.00 (5.09 – 7.05)*		Liver Disease	1.06 (0.99 – 1.14)	0.09
75 - 80	7.53 (6.40 – 8.86)*		Sleep Apnea	0.95 (0.91 – 1.00)*	0.04*
80 - 85	8.35 (7.10 – 9.82)*		Alcohol Abuse	0.93 (0.88 – 0.98)*	0.007*
>85	8.94		Peripheral Vascular Disease	NA	NA
	(7.59 - 10.52)*				
Race			Heart Failure	NA	NA
Black	1.02 (0.96 - 1.08)	0.63	Renal Disease	NA	NA
Other ^a	0.98 (0.92 - 1.04)		Rheumatic Disease	NA	NA
White	Ref		Hyperlipidemia	NA	NA
Sex			Peptic Ulcer Disease	NA	NA
Female	0.99 (0.89 – 1.10)	0.85	Atrial Fibrillation	NA	NA
Male	Ref		Depression	NA	NA
BMI			Hearing Loss	NA	NA
Underweight	0.89 (0.73 - 1.09)	<0.001*			
Normal	Ref				
Overweight	0.88 (0.84 - 0.92)*				
Obese	0.75 (0.71 - 0.80)*				

	Hazard Ratio	p-value		Hazard Ratio	p-value
	(95% CI)			(95% CI)	
Age MCI DX,			Comorbidities		
years					
50 – 55	Ref	<0.001*	Cerebrovascular Disease	1.10 (1.06 - 1.15)*	<0.001*
55 - 60	1.53 (1.26 - 1.85)*		Myocardial Infarction	1.09 (1.03 - 1.16)*	0.004*
60 - 65	2.76 (2.33 – 3.26)*		Hypertension	1.07 (1.02 - 1.13)*	0.01*
65 – 70	4.17 (3.54 - 4.90)*		Diabetes	1.06 (1.02 - 1.10)	0.007*
70 – 75	6.00 (5.09 - 7.05)*		Liver Disease	1.06 (0.99 - 1.14)	0.09
75 – 80	7.53 (6.40 - 8.86)*		Sleep Apnea	0.95 (0.91 - 1.00)*	0.04*
80 - 85	8.35 (7.10 – 9.82)*		Alcohol Abuse	0.93 (0.88 - 0.98)*	0.007*
>85	8.94		Peripheral Vascular Disease	NA	NA
	(7.59 – 10.52)*				
Race			Heart Failure	NA	NA
Black	1.02 (0.96 - 1.08)	0.63	Renal Disease	NA	NA
Other ^a	0.98 (0.92 - 1.04)		Rheumatic Disease	NA	NA
White	Ref		Hyperlipidemia	NA	NA
Sex			Peptic Ulcer Disease	NA	NA
Female	0.99 (0.89 – 1.10)	0.85	Atrial Fibrillation	NA	NA
Male	Ref		Depression	NA	NA
BMI			Hearing Loss	NA	NA
Underweight	0.89 (0.73 - 1.09)	<0.001*			
Normal	Ref				
Overweight	0.88 (0.84 - 0.92)*				
Obese	0.75 (0.71 - 0.80)*				

 Patient age is the overwhelming risk factor

	Hazard Ratio	p-value		Hazard Ratio	p-value
	(95% CI)			(95% CI)	
Age MCI DX,			Comorbidities		
years					
50 – 55	Ref	<0.001*	Cerebrovascular Disease	1.10 (1.06 - 1.15)*	<0.001*
55 – 60	1.53 (1.26 – 1.85)*		Myocardial Infarction	1.09 (1.03 - 1.16)*	0.004*
60 – 65	2.76 (2.33 – 3.26)*		Hypertension	1.07 (1.02 - 1.13)*	0.01*
65 – 70	4.17 (3.54 - 4.90)*		Diabetes	1.06 (1.02 - 1.10)	0.007*
70 – 75	6.00 (5.09 - 7.05)*		Liver Disease	1.06 (0.99 - 1.14)	0.09
75 – 80	7.53 (6.40 - 8.86)*		Sleep Apnea	0.95 (0.91 - 1.00)*	0.04*
80 - 85	8.35 (7.10 – 9.82)*		Alcohol Abuse	0.93 (0.88 - 0.98)*	0.007*
>85	8.94		Peripheral Vascular Disease	NA	NA
	(7.59 - 10.52)*				
Race			Heart Failure	NA	NA
Black	1.02 (0.96 - 1.08)	0.63	Renal Disease	NA	NA
Otherª	0.98 (0.92 - 1.04)		Rheumatic Disease	NA	NA
White	Ref		Hyperlipidemia	NA	NA
Sex			Peptic Ulcer Disease	NA	NA
Female	0.99 (0.89 - 1.10)	0.85	Atrial Fibrillation	NA	NA
Male	Ref		Depression	NA	NA
BMI			Hearing Loss	NA	NA
Underweight	0.89 (0.73 - 1.09)	<0.001*			
Normal	Ref				
Overweight	0.88 (0.84 - 0.92)*				
Obese	0.75 (0.71 - 0.80)*				

- Patient age is the overwhelming risk factor
- High BMI was protective of ACD conversion

	Hazard Ratio (95% CI)	p-value		Hazard Ratio (95% CI)	p-value
Age MCI DX,			Comorbidities		
years					
50 - 55	Ref	<0.001*	Cerebrovascular Disease	1.10 (1.06 - 1.15)*	<0.001*
55 - 60	1.53 (1.26 - 1.85)*		Myocardial Infarction	1.09 (1.03 – 1.16)*	0.004*
60 - 65	2.76 (2.33 – 3.26)*		Hypertension	1.07 (1.02 – 1.13)*	0.01*
65 – 70	4.17 (3.54 - 4.90)*		Diabetes	1.06 (1.02 – 1.10)	0.007*
70 – 75	6.00 (5.09 - 7.05)*		Liver Disease	1.06 (0.99 – 1.14)	0.09
75 – 80	7.53 (6.40 - 8.86)*		Sleep Apnea	0.95 (0.91 - 1.00)*	0.04*
80 - 85	8.35 (7.10 - 9.82)*		Alcohol Abuse	0.93 (0.88 - 0.98)*	0.007*
>85	8.94		Peripheral Vascular Disease	NA	NA
	(7.59 - 10.52)*				
Race			Heart Failure	NA	NA
Black	1.02 (0.96 - 1.08)	0.63	Renal Disease	NA	NA
Other ^a	0.98 (0.92 - 1.04)		Rheumatic Disease	NA	NA
White	Ref		Hyperlipidemia	NA	NA
Sex			Peptic Ulcer Disease	NA	NA
Female	0.99 (0.89 - 1.10)	0.85	Atrial Fibrillation	NA	NA
Male	Ref		Depression	NA	NA
BMI			Hearing Loss	NA	NA
Underweight	0.89 (0.73 - 1.09)	<0.001*			
Normal	Ref				
Overweight	0.88 (0.84 - 0.92)*				
Obese	0.75 (0.71 - 0.80)*				

- Patient age is the overwhelming risk factor
- High BMI was protective of ACD conversion
- Vascular diseaserelated comorbidities were the strongest comorbid predictors

	Hazard Ratio	p-value		Hazard Ratio	p-value
	(95% CI)			(95% CI)	
Age MCI DX,			Comorbidities		
years					
50 - 55	Ref	<0.001*	Cerebrovascular Disease	1.10 (1.06 - 1.15)*	<0.001*
55 - 60	1.53 (1.26 – 1.85)*		Myocardial Infarction	1.09 (1.03 – 1.16)*	0.004*
60 - 65	2.76 (2.33 – 3.26)*		Hypertension	1.07 (1.02 – 1.13)*	0.01*
65 – 70	4.17 (3.54 - 4.90)*		Diabetes	1.06 (1.02 - 1.10)	0.007*
70 – 75	6.00 (5.09 - 7.05)*		Liver Disease	1.06 (0.99 - 1.14)	0.09
75 - 80	7.53 (6.40 - 8.86)*		Sleep Apnea	0.95 (0.91 - 1.00)*	0.04*
80 - 85	8.35 (7.10 - 9.82)*		Alcohol Abuse	0.93 (0.88 - 0.98)*	0.007*
>85	8.94		Peripheral Vascular Disease	NA	NA
	(7.59 – 10.52)*				
Race			Heart Failure	NA	NA
Black	1.02 (0.96 - 1.08)	0.63	Renal Disease	NA	NA
Other ^a	0.98 (0.92 - 1.04)		Rheumatic Disease	NA	NA
White	Ref		Hyperlipidemia	NA	NA
Sex			Peptic Ulcer Disease	NA	NA
Female	0.99 (0.89 - 1.10)	0.85	Atrial Fibrillation	NA	NA
Male	Ref		Depression	NA	NA
BMI			Hearing Loss	NA	NA
Underweight	0.89 (0.73 - 1.09)	<0.001*			
Normal	Ref				
Overweight	0.88 (0.84 - 0.92)*				
Obese	0.75 (0.71 - 0.80)*				

 Patient age is the overwhelming risk factor

- High BMI was protective of ACD conversion
- Vascular diseaserelated comorbidities were the strongest comorbid predictors
- Alcohol abuse and sleep apnea were found to be protective

	Hazard Ratio	p-value		Hazard Ratio	p-value
	(95% CI)			(95% CI)	
Age MCI DX,			Comorbidities		
years					
50 – 55	Ref	<0.001*	Cerebrovascular Disease	1.10 (1.06 - 1.15)*	<0.001*
55 – 60	1.53 (1.26 - 1.85)*		Myocardial Infarction	1.09 (1.03 - 1.16)*	0.004*
60 - 65	2.76 (2.33 - 3.26)*		Hypertension	1.07 (1.02 - 1.13)*	0.01*
65 – 70	4.17 (3.54 - 4.90)*		Diabetes	1.06 (1.02 - 1.10)	0.007*
70 – 75	6.00 (5.09 - 7.05)*		Liver Disease	1.06 (0.99 - 1.14)	0.09
75 – 80	7.53 (6.40 - 8.86)*		Sleep Apnea	0.95 (0.91 - 1.00)*	0.04*
80 - 85	8.35 (7.10 - 9.82)*		Alcohol Abuse	0.93 (0.88 - 0.98)*	0.007*
>85	8.94		Peripheral Vascular Disease	NA	NA
	(7.59 – 10.52)*				
Race			Heart Failure	NA	NA
Black	1.02 (0.96 - 1.08)	0.63	Renal Disease	NA	NA
Other ^a	0.98 (0.92 - 1.04)		Rheumatic Disease	NA	NA
White	Ref		Hyperlipidemia	NA	NA
Sex			Peptic Ulcer Disease	NA	NA
Female	0.99 (0.89 - 1.10)	0.85	Atrial Fibrillation	NA	NA
Male	Ref		Depression	NA	NA
BMI			Hearing Loss	NA	NA
Underweight	0.89 (0.73 - 1.09)	<0.001*			
Normal	Ref				
Overweight	0.88 (0.84 - 0.92)*				
Obese	0.75 (0.71 - 0.80)*				

• Predicting ACD conversion at five years

- Time-dependent
 AUC = 0.73
 (95% CI: 0.72 0.74)
- Time-dependent
 Brier score = 0.18
 (95% CI: 0.17 0.18)

Synthetic vs Real Data: Multivariate Analysis

	A. Training Set Real		B. Training Set Synthetic #1		C. Training Set Synthetic #2		D. Training Set Synthetic #3	
	Hazard Ratio	p-value	Hazard Ratio	p-value	Hazard Ratio	p-value	Hazard Ratio	p-value
	(95% CI)		(95% CI)		(95% CI)		(95% CI)	
Age MCI DX,		<0.001*		<0.001*		<0.001*		<0.001*
years								
50 - 55	Ref		Ref		Ref		Ref	
55 - 60	1.53 (1.26 – 1.85)*		1.59 (1.31 – 1.93)*		1.55 (1.28 – 1.89)*		1.55 (1.28 – 1.89)*	
60 - 65	2.76 (2.33 – 3.26)*		2.96 (2.50 – 3.53)*		2.88 (2.43 – 3.42)*		2.90 (2.44 – 3.45)*	
65 – 70	4.17 (3.54 – 4.90)*		4.43 (3.74 – 5.24)*		4.33 (3.66 – 5.12)*		4.37 (3.70 – 5.17)*	
70 – 75	6.00 (5.09 – 7.05)*		6.37 (5.38 – 7.55)*		6.23 (5.27 – 7.37)*		6.26 (5.29 – 7.41)*	
75 - 80	7.53 (6.40 – 8.86)*		8.03 (6.78 - 9.50)*		7.84 (6.64 – 9.27)*		7.89 (6.67 – 9.33)*	
80 - 85	8.35 (7.10 – 9.82)*		8.88		8.72		8.74 (7.39 – 10.33)*	
			(7.51 – 10.51)*		(7.38 – 10.30)*			
>85	8.94		9.50		9.27		9.32 (7.88 – 11.03)*	
	(7.59 – 10.52)*		(8.02 – 11.25)*		(7.84 – 10.96)*			
Race		0.63		0.70		0.65		0.63
Black	1.02 (0.96 – 1.08)		1.02 (0.96 - 1.08)		1.02 (0.96 – 1.08)		1.02 (0.96 – 1.08)	
Other ^a	0.98 (0.92 – 1.04)		0.98 (0.92 - 1.04)		0.98 (0.92 – 1.04)		0.98 (0.92 – 1.04)	
White	Ref		Ref		Ref		Ref	
Sex		0.85		0.97		0.92		0.97
Female	0.99 (0.89 - 1.10)		1.00 (0.90 - 1.11)		0.99 (0.89 – 1.11)		1.00 (0.90 - 1.11)	
Male	Ref		Ref		Ref		Ref	
BMI								
Underweight	0.89 (0.73 - 1.09)	<0.001*	0.88 (0.71 - 1.08)	<0.001*	0.88 (0.71 – 1.08)	<0.001*	0.87 (0.71 – 1.08)	<0.001*
Normal	Ref		Ref		Ref		Ref	
Overweight	0.88 (0.84 - 0.92)*		0.89 (0.85 - 0.93)*		0.89 (0.85 – 0.93)*		0.88 (0.84 - 0.93)*	
Obese	0.75 (0.71 – 0.80)*		0.76 (0.72 - 0.80)*		0.76 (0.72 – 0.80)*		0.75 (0.71 – 0.80)*	

Synthetic vs Real Data: Multivariate Analysis

	A. Training Set Real		B. Training Set Synthetic #1		C. Training Set Synthetic #2		D. Training Set Synthetic #3	
	Hazard Ratio (95% CI)	p-value	Hazard Ratio (95% CI)	p-value	Hazard Ratio (95% Cl)	p-value	Hazard Ratio (95% CI)	p-value
Comorbidities								
Cerebrovascular	1.10 (1.06 – 1.15)*	<0.001*	1.10 (1.05 – 1.15)*	<0.001*	1.10 (1.05 – 1.15)*	<0.001*	1.10 (1.05 – 1.15)*	<0.001*
Disease								
Myocardial	1.09 (1.03 – 1.16)*	0.004*	1.09 (1.02 – 1.15)*	0.008*	1.09 (1.02 – 1.15)*	0.008*	1.08 (1.02 – 1.15)*	0.01*
Infarction								
Hypertension	1.07 (1.02 – 1.13)*	0.01*	1.07 (1.01 – 1.13)*	0.02*	1.07 (1.01 – 1.13)*	0.01*	1.08 (1.02 - 1.14)*	0.008*
Diabetes	1.06 (1.02 - 1.10)	0.007*	1.05 (1.01 – 1.10)	0.02*	1.05 (1.01 – 1.10)	0.02*	1.05 (1.01 – 1.10)	0.02*
Liver Disease	1.06 (0.99 - 1.14)	0.09	1.06 (0.99 - 1.14)	0.11	1.07 (0.99 - 1.14)	0.07	1.06 (0.99 - 1.14)	0.09
Peripheral	NA	NA	1.03 (0.99 - 1.08)	0.15	1.04 (0.99 - 1.09)	0.13	1.04 (0.99 - 1.08)	0.14
Vascular Disease								
Sleep Apnea	0.95 (0.91 - 1.00)*	0.04*	0.95 (0.90 - 1.00)*	0.04*	0.95 (0.90 - 1.00)*	0.04*	0.95 (0.90 - 1.00)*	0.04*
Alcohol Abuse	0.93 (0.88 - 0.98)*	0.007*	0.92 (0.87 - 0.98)*	0.004*	0.92 (0.87 – 0.97)*	0.003*	0.92 (0.87 - 0.97)*	0.003*
Heart Failure	NA	NA	NA	NA	NA	NA	NA	NA
Renal Disease	NA	NA	NA	NA	NA	NA	NA	NA
Rheumatic	NA	NA	NA	NA	NA	NA	NA	NA
Disease								
Hyperlipidemia	NA	NA	NA	NA	NA	NA	NA	NA
Peptic Ulcer	NA	NA	NA	NA	NA	NA	NA	NA
Disease								
Atrial Fibrillation	NA	NA	NA	NA	NA	NA	NA	NA
Depression	NA	NA	NA	NA	NA	NA	NA	NA
Hearing Loss	NA	NA	NA	NA	NA	NA	NA	NA

	A. Training Set	B. Training Set	C. Training Set	D. Training Set
	Real	Synthetic #1	Synthetic #2	Synthetic #3
Time – Dependent AUC	0.73 (0.72 – 0.74)	0.73 (0.72 – 0.74)	0.73 (0.72 – 0.74)	0.73 (0.72 – 0.74)
(95% CI)				
Time – Dependent AUC	Ref	(<0.001)	(<0.001)	(<0.001)
Comparison ^a , (Difference)		[p=0.72]	[p=0.95]	[p=0.60]
[p-value]				
Time – Dependent Brier	0.18 (0.17 - 0.18)	0.18 (0.17 - 0.18)	0.18 (0.17 – 0.18)	0.18 (0.17 - 0.18)
(95% CI)				
Brier Score Comparisons ^a ,	Ref	(<0.001)	(<0.001)	(<0.001)
(Difference) [p-value]		[p=0.61]	[p=0.48]	[p=0.91]
Prediction Expected	22.55% (27.67)	22.37% (27.79)	22.33% (27.78)	22.43% (27.78)
Conversion Probability,				
Median (IQR)				
Correlation of Expected	Ref	0.99	0.99	0.99
Conversion Probability				

	A. Training Set	B. Training Set	C. Training Set	D. Training Set
	Real	Synthetic #1	Synthetic #2	Synthetic #3
Time – Dependent AUC	0.73 (0.72 - 0.74)	0.73 (0.72 – 0.74)	0.73 (0.72 – 0.74)	0.73 (0.72 – 0.74)
(95% CI)				
Time – Dependent AUC	Ref	(<0.001)	(<0.001)	(<0.001)
Comparison ^a , (Difference)		[p=0.72]	[p=0.95]	[p=0.60]
[p-value]				
Time – Dependent Brier	0.18 (0.17 - 0.18)	0.18 (0.17 – 0.18)	0.18 (0.17 – 0.18)	0.18 (0.17 – 0.18)
(95% CI)				
Brier Score Comparisons ^a ,	Ref	(<0.001)	(<0.001)	(<0.001)
(Difference) [p-value]		[p=0.61]	[p=0.48]	[p=0.91]
Prediction Expected	22.55% (27.67)	22.37% (27.79)	22.33% (27.78)	22.43% (27.78)
Conversion Probability,				
Median (IQR)				
Correlation of Expected	Ref	0.99	0.99	0.99
Conversion Probability				

	A. Training Set	B. Training Set	C. Training Set	D. Training Set
	Real	Synthetic #1	Synthetic #2	Synthetic #3
Time – Dependent AUC	0.73 (0.72 - 0.74)	0.73 (0.72 – 0.74)	0.73 (0.72 – 0.74)	0.73 (0.72 – 0.74)
(95% CI)				
Time – Dependent AUC	Ref	(<0.001)	(<0.001)	(<0.001)
Comparison ^a , (Difference)		[p=0.72]	[p=0.95]	[p=0.60]
[p-value]				
Time – Dependent Brier	0.18 (0.17 - 0.18)	0.18 (0.17 - 0.18)	0.18 (0.17 – 0.18)	0.18 (0.17 - 0.18)
(95% CI)				
Brier Score Comparisons ^a ,	Ref	(<0.001)	(<0.001)	(<0.001)
(Difference) [p-value]		[p=0.61]	[p=0.48]	[p=0.91]
Prediction Expected	22.55% (27.67)	22.37% (27.79)	22.33% (27.78)	22.43% (27.78)
Conversion Probability,				
Median (IQR)				
Correlation of Expected	Ref	0.99	0.99	0.99
Conversion Probability				

	A. Training Set	B. Training Set	C. Training Set	D. Training Set
	Real	Synthetic #1	Synthetic #2	Synthetic #3
Time – Dependent AUC	0.73 (0.72 - 0.74)	0.73 (0.72 – 0.74)	0.73 (0.72 – 0.74)	0.73 (0.72 – 0.74)
(95% CI)				
Time – Dependent AUC	Ref	(<0.001)	(<0.001)	(<0.001)
Comparison ^a , (Difference)		[p=0.72]	[p=0.95]	[p=0.60]
[p-value]				
Time – Dependent Brier	0.18 (0.17 - 0.18)	0.18 (0.17 - 0.18)	0.18 (0.17 – 0.18)	0.18 (0.17 - 0.18)
(95% CI)				
Brier Score Comparisons ^a ,	Ref	(<0.001)	(<0.001)	(<0.001)
(Difference) [p-value]		[p=0.61]	[p=0.48]	[p=0.91]
Prediction Expected	22.55% (27.67)	22.37% (27.79)	22.33% (27.78)	22.43% (27.78)
Conversion Probability,				
Median (IQR)				
Correlation of Expected	Ref	0.99	0.99	0.99
Conversion Probability				

1-Specificity

Conclusions

- <u>Primary Aim</u>: Develop an EHR-based model to predict MCI to ACD conversion
 - Age, cerebrovascular disease, myocardial infarction, hypertension and diabetes are risk factors, with age being the overwhelming risk factor
 - High BMI, sleep apnea, and alcohol abuse are protective factors
 - EHR-based model showed good discriminative performance (AUC = 0.73) and good calibration (Brier score 0.18)
- <u>Secondary Aim</u>: Compare model performance using real vs. synthetic data
 - Point estimates and 95% CIs in synthetic data closely mirrored real data
 - Prediction metrics of synthetic data were comparable to real data

Implications For Veterans and the VA

- VA EHR could be used to identify MCI patients at highest risk of developing dementia for early treatment or clinical trial recruitment
 - -> cost-effective care

-> improve clinical trial success rate, reduce number of participants and cost

- Wide access to synthetic data, with minimized privacy risk, to create, test and verify models that could then be validated internally with real data
- Future Directions
 - Improve model by expanding with available EHR data elements
 - Need to discover unidentified non-traditional factors behind the overwhelming role of aging in dementia conversion
 - Further validation of synthetic data in non-linear or ML models

Acknowledgments

- Funding and Support: Phoenix VA Office of Research (Dr. Aguayo, Dr. Permana, Dr. Thompson), NSF award no. IIS 2124127
- VA Office of Healthcare Innovation and Learning (ARCHES platform)
- VA CIPHER (phenomic classification)